
Multi-Object Navigation with dynamically learned neural implicit representations

Pierre Marza 1* Laetitia Matignon2 Olivier Simonin1 Christian Wolf3
1INSA Lyon 2UCBL 3Naver Labs Europe

Project Page: https://pierremarza.github.io/projects/dynamic_implicit_representations/

Abstract

Understanding and mapping a new environment are core
abilities of any autonomously navigating agent. While classi-
cal robotics usually estimates maps in a stand-alone manner
with SLAM variants, which maintain a topological or met-
ric representation, end-to-end learning of navigation keeps
some form of memory in a neural network. Networks are
typically imbued with inductive biases, which can range
from vectorial representations to birds-eye metric tensors or
topological structures. In this work, we propose to structure
neural networks with two neural implicit representations,
which are learned dynamically during each episode and
map the content of the scene: (i) the Semantic Finder pre-
dicts the position of a previously seen queried object; (ii) the
Occupancy and Exploration Implicit Representation encap-
sulates information about explored area and obstacles, and
is queried with a novel global read mechanism which directly
maps from function space to a usable embedding space. Both
representations are leveraged by an agent trained with Re-
inforcement Learning (RL) and learned online during each
episode. We evaluate the agent on Multi-Object Navigation
and show the high impact of using neural implicit represen-
tations as a memory source.

1. Introduction

Autonomous navigation in complex unknown 3D environ-
ments from visual observations requires building a suit-
able representation of the environment, in particular when
the targeted navigation task requires high-level reasoning.
Whereas classical robotics builds these representations ex-
plicitly through reconstructions, possibly supported through
machine learning, end-to-end training learns them automat-
ically either from reward, by imitation learning or through
self-supervised objectives.

While spatial representations can emerge even in unstruc-
tured agents, as shown in the form of grid-cells in artificial
[16, 3] and biological agents [25], spatial inductive biases

*Correspondence: pierre.marza@insa-lyon.fr

fs xg

fo
θo

s fo
θo er

x

θs

Dec

(x, s)

1 2

3 4

Figure 1. We propose two implicit representations as inductive
biases for autonomous agents — both are learned online during
each episode. ➁ a semantic representation fs predicts positions
x from goals g given as semantic codes. We show Ground Truth
object positions (rectangles) and predictions (round; radius shows
uncertainty, unit-less, as an illustration). Blue and pink objects have
been observed, but not the yellow target. ➂ A structural represen-
tation fo predicts occupancy and exploration s from positions x;
we provide a global read which directly maps from function space
fo (represented by trainable weights θo) to a context embedding
e used by the agent. ➃ shows the reconstruction produced by a
decoder Dec during training. Orange=navigable, Green=Obstacles,
Blue=Unexplored. ➀ a ground-truth map is shown for reference,
simulating a fully explored scene.

can support learning actionable spatial representations and
decrease sample complexity. Popular inductive biases are
metric maps [44, 5, 26], topological maps [6, 12] and re-
cently, self-attention, adapting transformers [55] to sequen-
tial decision making and navigation [20, 18, 13, 47]. The
chosen representation should support robust estimation of
navigable space even in difficult conditions, mapping fea-
tures and objects of interest, as well as querying and reusing
this information at a later time. The representation should

https://pierremarza.github.io/projects/dynamic_implicit_representations/
mailto:pierre.marza@insa-lyon.fr


be as detailed as required, span the full (observed) scene,
easy to query, and efficient to read and write to, in particular
when training is done in large-scale simulations.

Our work builds on neural fields and implicit represen-
tations, a category of models which represent the scene ge-
ometry, and eventually the semantics, by the weights of a
trained neural network [57]. They have the advantage of
avoiding the explicit choice of scene representation (e.g. vol-
ume, surface, point cloud etc.) and inherently benefit from
the generalization abilities of deep networks to interpolate
and complete unobserved information. Implicit represen-
tations have demonstrated impressive capabilities in novel
view synthesis [40, 51], and have potential as a competitive
representation for robotics [42, 32, 52, 1]. Their continu-
ous nature allows them to handle level of detail efficiently
through a budget given as the amount of trainable weights.
This allows to span large environments without the need of
discretizing the environment and handling growing maps.

We explore and study the potential of implicit represen-
tations as inductive biases for visual navigation. Similar to
recent work in implicit SLAM [52], our representations are
dynamically learned in each episode. Going beyond, we
exploit the representation dynamically in one of the most
challenging visual navigation tasks, Multi-Object Naviga-
tion [56]. We introduce two complementary representations,
namely a query-able Semantic Finder trained to predict the
scene coordinates of an object of interest specified as input,
and an Occupancy and Exploration Implicit Representation,
which maps 2D coordinates to occupancy information, see
Figure 1. We address the issue of the efficiency of query-
ing an implicit representation globally by introducing a new
global read mechanism, which directly maps from function
space, represented through its trainable parameters, to an
embedding summarizing the current status of occupancy and
exploration information, useful for navigation. Invariance
w.r.t. reparametrization of the queried network is favored
(but not enforced) through a transformer based solution. Our
method does not require previous rollouts on the scene for
pre-training or building a representation.

Our work targets a fundamental aspect of visual and se-
mantic navigation, the mapping of key objects of interest.
MultiON is currently one of the few benchmarks which eval-
uates it. As argued in previous literature [5, 56], only sequen-
tial tasks, where objects have to be found in a given order,
allow object level mapping to emerge directly from reward.
This follows from the observation that an agent trained to
find and retrieve a single object per episode (from reward) is
not required to map seen target objects, as observing them
directly leads to a reactive motion towards them.

Our contributions can be summarized as follows: (i) We
propose two implicit representations for semantic, occupancy
and exploration information, which are trained online during
each episode; (ii) We introduce a new global read procedure

which can extract summarizing context information directly
from the function itself; (iii) We show that the representa-
tions obtain performance gains compared to classical neural
agents; (iv) We evaluate and analyze key design choices, the
representation’s scaling laws and its capabilities of lifelong
learning.

2. Related Work
Visual Navigation — is a rich problem that involves

perception, mapping and decision making, with required
capacities being highly dependent on the specific task. A
summary of reasoning in navigation has been given in [2],
differentiating, for instance, between waypoint navigation
(Pointgoal) [2] or finding objects of semantic categories
(ObjectGoal) [2]. More recent tasks have been explicitely
designed to evaluate and encourage mapping objects of in-
terest during navigation itself [4, 56]. They are of sequential
nature and use external objects, which are not part of the
scanned 3D scenes but randomly placed. In this work we
address Multi-Object Navigation (MultiON) [56].

Mapping and Representations — Classical methods
often rely on SLAM [8, 34] which has been proposed in
different variants (2D or 3D metric, topological) and ob-
servations (LIDAR, visual). The objective is to integrate
observations and odometry estimates over a trajectory and
reconstruct the scene. Differentiable variants have been pro-
posed recently [28, 30]. Mapping can also be discovered
through interactions by a blind agent [7]. Visual Navigation
can be framed as an end-to-end learning problem, where
representations are learned automatically from different sig-
nals, in particular RL. Memory can take the form of vectorial
representations in recurrent units [41, 27, 62], with hybrid
variants including mapping [12, 48, 17]. Recent work tends
to augment agents with structured memories. Examples are
spatial metric tensors, which can contain occupancy [11],
semantics [10] or be fully latent, effectively corresponding
to inductive biases of the neural agents [44, 5, 26]. Other
alternatives are topological maps [6, 12] or self-attention and
transformers [55] adapted to navigation [20, 18, 13, 47].

Implicit representations — were initially targeting 3D
reconstruction [39, 45, 14]. The core idea is to replace
the need for discretizing 3D space into voxels [38], 3D
points [19] or meshes [23], by an implicit representation
of the 3D structure of the scene through the parameters of
a learned neural network. Recent work [40, 51] achieved
state-of-the-art performance on novel view synthesis with
neural implicit representations. The NeRF paper introduced
a differentiable volume rendering loss allowing to supervise
3D scene reconstruction from only 2D supervision [40]. For
a more detailed overview of recent advances in the rapidly
growing field, we refer the reader to [57].

Implicit representations in robotics — are a recent
phenomenon, used to represent density [1] or to perform vi-



suomotor control [33]. Related to goal-oriented navigation,
some work targets SLAM with neural implicit representa-
tions [52], follow-up adding semantics [59], learned from
sparse semantic annotations of the scene. [60] is also built
on top of [52] and allows a user to interactively provide
semantic annotation for the implicit representation to be
trained on in real time. [63] proposes a hierarchical implicit
representation of a scene to scale to larger environments
and obtain a more detailed reconstruction. [15] combines
feature-based SLAM and NeRF. Our work goes beyond im-
plicit SLAM and does not stop at reconstructing a scene. We
not only build implicit representations dynamically during
the episode, we also use them in a down-stream navigation
task without requiring any initial rollout for pre-training or
building a representation. We also combine two different im-
plicit representations targeting semantics vs. scene structure.

Analyzing the neural network function space — im-
plicit representations are instances of function spaces, which
are represented through their trainable parameters. Previous
work performed analyses by predicting accuracy from net-
work weights [54, 35, 36] or the generality gap between train
and test performance from hidden activations [29, 58]. A
direction pioneered by Hypernetworks [24] directly predict
the network weights. Recently, [61] generate the weights
of a CNN from support samples in the context of few-shot
learning. More related to our work, [43] learns to predict
the weights of an implicit representation based on external
factors in the context of spatio-temporal dynamics encoding.
In this work, we learn a direct mapping between an implicit
representation, represented by its weights, to an actionable
embedding summarizing the scene globally.

3. Navigating with implicit representations
We target the Multi-Object Navigation task [56], which
requires an agent to navigate in a photo realistic 3D environ-
ment from RGB-D observations ot and reach a sequence of
target objects (colored cylinders) in a particular order. Goal
categories gt are given at each time step t. In an RL set-
ting, the agent receives positive reward for each successfully
reached object as well as when the geodesic distance towards
the goal decreases, and a small negative reward for each step,
favoring short paths.

We follow and augment a base end-to-end architecture
used in many recent RL approaches, including [56, 37, 41],
with the RGB-D observation, class of the target and previous
action as input to the agent. Temporal information is aggre-
gated with a GRU unit whose output is fed to actor and critic
heads. We equip this agent with two implicit representations,
trained to hold and map essential information necessary for
navigation: the positions of different objects of interest, and
occupancy / exploration information, as shown in Figure 1,

fsfoThe goal of the Semantic Finder fs(.; θs) parameter-

ized by trainable weights θs is to predict the absolute
position of an object as x = [xx xy xz] = fs(q; θs)
specified through an input query vector q. Uncertainty
u is also estimated — see Section 3.1 for details. x is
then converted into coordinates relative to the agent
to be fed to the GRU. Compared to classical metric
representations [26, 44, 12, 5], querying the location
of an object can be done through a single forward pass.

fsfo The Occupancy and Exploration Representation
fo(.; θo) parameterized by trainable weights θo en-
codes information about free navigable space and ob-
stacles. It predicts occupancy s as a classification prob-
lem with three classes {Obstacle, Navigable, Unex-
plored}, as s = fo(ϕ; θo), where ϕ is a position feature
vector encoded from coordinates x — see Section 3.2
for details.

The Occupancy and Exploration Representation can in
principle be queried directly for a single position, but reading
out information over a large area directly this way would re-
quire multiple reads. We propose to compress this procedure
by providing a trainable global read operation r(.; θg), which
predicts an embedding e containing a global context about
what has already been explored, and positions of navigable
space. The prediction is done directly from the trainable
parameters of the implicit representation, as e = r(θo; θr).
Here θo is input to r, whereas θr are its parameters.

Given representations fs and fo, a single forward pass of
the agent at time step t and for a goal gt involves reading the
representations and providing the input to the policy. The
current RGB-D observation ot is also encoded by the convo-
lutional network c (different from the projection module p
used to generate samples for training the Semantic Finder).
Previous action at−1 and current goal gt are passed through
embedding layers, named L(.) in the following equations.
These different outputs are fed to the policy,

xt = fs(gt; θs,t), et = r(θo,t; θr), ct = c(ot; θc), (1)
ht = GRU(ht−1,xt, ut, et, L(at−1), L(gt), ct; θG), (2)
at = π(ht; θπ), (3)

where we added indices ·t to relevant variables to indicate
time. Please note that the trainable parameters θs,t and θo,t of
the two implicit representations are time dependent, as they
depend on the observed scene and are updated dynamically,
whereas the parameters of the policy π and the global reader
r are not. Here, GRU corresponds to the update equations
of a GRU network, where we omitted gates for ease of
notation. The notation at = π(.) predicting action at is
also a simplification, as we train the agent with PPO, an
actor-critic method — see Section 3.4.

Mapping means training! — The implicit representa-
tions fs and fo maintain a compact and actionable represen-
tation of the observed scene, and as such need to be updated



Mapping	=	training	
representations

Query

Global	read

fs

fo
θo

θs

p

Inverse	projectionSegmentation

x x∗L

s s∗L
e

x

Goal

RGB-D	
observation

gt
r

ot

htatht−1

Representation	perception	
(pre-trained)

Implicit
representations

Reactive	Perception	
(pre-trained)

c

at−1
ActionVectorial	memory

Figure 2. Navigating with implicit representations. Red connections indicate the training process of the two implicit representations
(=mapping), which is also done during agent deployment. Black connections show the forward pass of the agent. are discrete learned
embeddings (LUT). Policy training is not shown in this figure.

at each time step from the current observation ot. Given
their implicit nature and implementation as neural networks,
updates are gradient based and done with SGD. The implicit
representations are therefore trained from scratch at each
episode even after deployment.

Training a representation from observations obtained se-
quentially during an episode also raises a serious issue of
catastrophic forgetting [22], as places of the scene observed
early might be forgotten later in the episode [52, 59]. We
solve this by maintaining two replay buffers throughout the
episode, one for each representation. Training samples are
generated from each new observation and added to the re-
play buffers at each time step. Both representations are then
trained for a number of gradient steps (ns for the Semantic
Finder and no for the Exploration and Occupancy Represen-
tation). Details on the two representations and their training
are given in Sections 3.1 and 3.2. The global reader r is not
trained or finetuned online but rather trained once offline.

3.1. The Semantic Finder fs

While recent work on implicit representations for robotics
focused on signed distance functions [42, 32], occupancy
[52] or density, assuming light density approximates mass
density [1], the aim of this model is to localize an object
of interest within the scene, which can be seen as inverse
operation to classical work. From a query vector given
as input, the Semantic Finder predicts the position of the
object, which is particularly useful in the context of a goal
conditioned task. It is implemented as a 3-layer MLP with
ReLu activations in the intermediate layers and a sigmoid
activation for the output. Hidden layers have 512 neurons.
The query vector q corresponds to the 1-in-K encoding of
the target object class, which during navigation is directly

determined by the object goal gt provided by the task.
Mapping/Training — The implicit representation is

updated minimizing the L1 loss between the prediction xi =
fs(qi, θs) and the supervised coordinates x∗

i (we avoided the
term “ground-truth” here on purpose), Ls =

∑
i ∥x∗

i −xi∥1,
where the sum goes over the batch sampled from the scene
replay buffer. Coordinates x∗

i are normalized ∈ [0, 1].
The data pairs (x∗

i , qi) for training are created from each
observation ot at each time step, each data point correspond-
ing to an observed point. Pixels in ot are inversely projected
into 3D coordinates in the scene using the depth channel, the
camera intrinsics, as well as agent’s coordinates and heading
that are assumed to be available, as in [56]. The query vec-
tor q is a 9-dimensional vector encoding a distribution over
object classes (8 target objects and the “background” class).
Let us recall that while the training of the representation is
supervised, this supervision cannot use “ground-truth” infor-
mation available only during training. All supervision infor-
mation is required to be predicted from the data available to
the agent even after deployment. We predict object class in-
formation through a semantic segmentation model p applied
to each current RGB-D observation ot ∈ Rh×w×4, recover-
ing the output segmentation map mt ∈ Rk×l×9. The model
has been pre-trained on the segmentation of the different
target objects, i.e. coloured cylinders, and is not fine-tuned
during training of the agent itself.

Training data pairs (x∗
i , qi) are sampled from this output.

The supervised coordinates x∗
i are simply the mean 3D co-

ordinates of each feature map cell, after inverse projection.
The query vector qi is the distribution over semantic classes.
After the replay buffer is updated, a training batch must be
sampled to update the neural field. One fourth of the samples
in the batch of size b correspond to the b/4 last steps. The



rest are sampled from the previous steps in the replay buffer.
Uniform sampling is also performed among pairs collected
at a given time step.

Estimating uncertainty — is an essential component, as
querying yet unseen objects will lead to wrong predictions,
which the agent needs to recognize as such, and discard. The
estimation of uncertainty in neural networks is an open prob-
lem, which has been previously addressed through different
means, including drop out as a Bayesian approximation [21],
variational information bottlenecks [50], density estimation
[31], and others. In this work, we approximate a density
estimate in the scene replay buffer by calculating the min-
imum Euclidean distance between the input query and all
embeddings in the replay buffer at the current time step. The
method is simple and efficient and does not require explicitly
fitting a model to estimate the marginal distribution p(q), in
particular as the uncertainty representation is latent, can be
un-normalized as not required to be a probability.

3.2. Occupancy and Exploration Implicit Represen-
tation fo

Unlike fs, the occupancy representation fo is closer to clas-
sical implicit representations in robotics, e.g. [52, 42, 32, 1],
which map spatial coordinates to variables encoding infor-
mation on navigable area like occupancy or signed distances.
Different to previous work, our representation also includes
exploration information, which changes over time during the
episode. Once explored, a position changes its class, which
makes our neural field dynamic. Another difference with
fs is that the latter deals with 3D coordinates while fo is a
topdown 2D representation. Inspired by [57, 53], the model
uses Fourier features ϕ extracted from the 2D coordinates x
previously normalized ∈ [0, 1],

ϕ = (cos(x20), sin(x20), ..., cos(x2
p
4 ), sin(x2

p
4 )). (4)

The network fo is a 3-layer MLP with ReLu intermediate ac-
tivations and a softmax function at the output layer. Hidden
layers have 512 neurons, and p = 40.

Mapping/Training — The implicit representation is
updated minimizing the Cross Entropy loss between the
prediction s of the neural field and the supervised label
s∗ of three classes {Obstacle, Navigable, Unexplored}, as
Lo = −∑3

c=1 s
∗
c log sc. As for the Semantic Finder, train-

ing data pairs (s∗, s) are created through inverse perspective
projection of the pixels of the observation ot into 3D scene
coordinates. Thresholding the z (height) coordinate decides
between Navigable and Obstacle classes. Points with a z
coordinate higher than a certain threshold are discarded. The
replay buffer is balanced between both classes, and only
samples of the last 1000 steps are kept. Samples of the
Unexplored class are not stored.

The replay buffer is sampled similarly to the one for
the Semantic Finder. However, additional samples for the
Unexplored class are created by sampling uniformly inside
the scene, for speed reasons simply ignoring conflicts with
explored areas and treating them as noisy labels.

3.3. Global Occupancy Read r — handling
reparametrization invariance

The global Occupancy reader r allows to query the occu-
pancy information of the scene globally, beyond point-wise
information, and as such is a trainable mapping from the
space of functions fo(.; .) to an embedding space e. In partic-
ular, two functions fo and f ′

o s.t. fo(x) = f ′
o(x) ∀x should

be mapped to identical or close embeddings. However, as
the occupancy networks fo are implemented as MLPs, any
given instance fo(.; θo) parameterized by trainable weights
θo can be reparametrized by any permutation of hidden units,
which leads to permutations of the rows and columns, re-
spectively, of two weight matrices, its own and the one of
the preceding layer. This reparameterization keeps the repre-
sented functions identical, although their representations as
weight vectors are different.

To favor learning a global occupancy reader which is
invariant w.r.t these transformations, we implement it as a
transformer model with self-attention [55] — this, however,
does not enforce full invariance. The model takes as input
a sequence of tokens (w1, ..., wN ), where wi ∈ Ra is a
learned linear embedding of the incoming weights of one
neuron within the implicit representation fo, and N is the
number of neurons of fo. Each token is summed with a posi-
tional encoding in the form of Fourier features. An additional
“CLS” token with learned embedding is concatenated to the
input sequence. The reader is composed of 4 self-attention
layers, with 8 attention heads. The output representation
of the “CLS” token is used as the global embedding of the
implicit representation.

Training — The global reader r is trained with full
supervision from a dataset of 25k trajectories composed of
MLP weights θo,i and absolute maps Mi, i..1..25k. Each
map is a metric tensor providing occupancy information
extracted from the corresponding implicit representation, i.e.
Mi(xy,xx) = fo(x, θo,i). The dataset also contains an ego-
centric version M′

i of each map, which is centered on the
agent and oriented depending on its current heading. The
reader r is trained in an Encoder-Decoder fashion, where r
plays the role of the encoder,

ei = r(θo,i), M̂i = Dec(ei, pi), (5)

where pi is the agent pose (position and heading), necessary
to decode ego-centric information. We minimize a cross
entropy loss on the prediction of ego-centric maps,

Lg = −∑
i

∑
k

∑
l

∑3
c=1 M

′∗
i,c(k, l) logM

′
i,c(k, l) (6)



Directly training this prediction proved to be difficult and
we thus propose a procedure involving three steps, which we
will only outline here. The full details, as well as network
architecture and integration of the global reader into the
agent architecture are given in the supplementary material.

First, a fully convolutional autoencoder is trained on the
set of absolute maps Mi. Only the decoder weights are
kept. The second step consists in training the global reader
to predict embeddings fed to the frozen convolutional de-
coder from the previous step. The objective is to reconstruct
absolute maps from the weights of the implicit representa-
tion. The global reader weights are kept after this training
phase. Finally, the global reader is now adapted along with
the decoder from absolute maps to ego-centric maps M′

i. To
this end, we learn a geometric transformation directly in the
embedding space: the embedding predicted by the global
reader is passed through linear layers and fused with the
agent position and heading before decoding, learning to pro-
duce the required shift and rotation. After the training phase,
the reader g is used in the perception + mapping module of
the agent as given in equation (1), and kept frozen during
agent RL training. Let’s note that the convolutional decoder
is discarded, only used during training.

3.4. Training the Agent

The agent is trained with RL, more precisely Proximal Pol-
icy Optimization (PPO) [49]. The inner training loops of
the implicit representations are supervised (red arrows in
Figure 2) and occur at each time step in the forward pass,
whereas the RL-based outer training loop of the agent oc-
cur after N acting steps (black arrows in Figure 2). As
the perception module used to generate training data from
RGBD-observations for the Semantic Finder fs is indepen-
dent of the visual encoder c in the agent (see Figure 2), and
as its query qt is fixed to the navigation goal gt, there is no
need to track the weights θs at each time step in order to
backpropagate the PPO loss (outer training). This is a key
design choice of our method.

Training assumptions — We do not rely on the ex-
istence of global GT maps for occupancy, as fo() and r()
were trained on observation data from agent trajectories only.
However, similar to [37, 46], we exploit object positions
in simulation, during training only; Moreover, we require
pixel-wise segmentation masks during training. We believe
that this does not change requirements, as the goal is to fully
exploit 3D photo-realistic simulators as a data source and
see how far the field can go with this. Generalization require-
ments are unchanged: we require our agent to be able to
generalize to new unseen scenes. Generalization to unseen
object categories is not targeted, and in MultiON task setup
not possible for any agent, as object positions and labels are
required for reward calculation.

4. Experiments
MultiON task — we target the 3-ON version of the

MultiON task [56], where the agent deals with sequences
of 3 objects, each belonging to one of 8 classes (cylinders
of different colors). At each step, the observation ot is an
RGB-D image of size 256×256×4 and the target class is a
one-in-K (K=8) vector. The action space is discrete: {Move
forward 0.25m, Turn left 30◦, Turn right 30◦, Found}. An
episode is considered successful if the agent finds all of the
targets before the time limit (2, 500 environment steps), and
chooses the Found action for each one at a distance closer to
1.5m. Calling Found incorrectly terminates episode as a fail-
ure. An access to perfect odometry information (localization
and heading) was assumed in [56] as the standard protocol.

Dataset and metrics — The agent is trained on the Mat-
terport3d [9] dataset. We followed the standard train/val/test
split over scenes (denoted MultiON train, MultiON val, Mul-
tiON test): 61 training, 11 validation and 18 test scenes.
The train, val and test splits are respectively composed of
50, 000, 12, 500 and 12, 500 episodes per scene. Reported
results on the val and test sets (Tables 1 and 2) were com-
puted on a subset of 1, 000 randomly sampled episodes. We
report standard metrics as used in the navigation literature
(and in [56]): Success: percentage of successful episodes
— all objects are reached respecting order, time; Progress:
percentage of objects successfully found (respecting order,
time); SPL: Success weighted by Path Length, extending the
original SPL metric [2] to MultiON; PPL: Progress weighted
By Path Length (the official MultiON challenge metric).

Global reader dataset — The Global reader r was
trained on a dataset of 25k trajectories obtained from roll-
outs performed by a baseline agent [37]. 95% was used for
training and the rest for validation. On these trajectories
we first trained the occupancy representation fo “in-situ”,
i.e. as if it were deployed on the agent, and we recorded
training samples i for training the reader r: pairs of network
weights θo,i and associated maps Mi obtained by iteratively
querying the implicit representation. Ego-centric maps were
generated from the absolute ones and both were cropped
around their center.

Perception module dataset — The perception module
p was trained to segment the different target objects. The
generated dataset is composed of 132k pairs of RGB-D
observations and segmentation masks. Samples for 4 scenes
were kept as a validation set.

Training details — We use the reward function given
in [56] for RL/PPO training (see supplementary material),
and train all agents for 70M steps as in [37]. For all agents
in Table 1 and some in Table 2 (w/ pre-train: ✓ in ρ column),
the encoders (visual encoder c, as well as goal and previous
action embedding layers, see Figure 2) are pre-trained with
a baseline, which corresponds to the ProjNeuralMap agent
trained with auxiliary losses [37]. This is done to faster train-



0− 30 30− 50 50− 70 — Val — — Test —
S O S O S O Success Progress SPL PPL Success Progress SPL PPL

µ
− − − − − − 33.2± 1.2 49.0± 1.1 21.2± 0.5 31.6± 1.2 42.3± 1.5 56.7± 0.9 28.1± 1.0 37.8± 1.8

− − ✓ − ✓ − 37.8± 1.6 52.3± 0.9 26.35± 1.5 36.5± 0.8 47.0± 1.7 60.5± 1.6 34.5± 0.8 44.2± 1.0

− − ✓ − ✓ ✓ 38.5± 4.6 52.5± 4.8 28.2± 2.1 38.3± 1.7 46.7 ± 3.0 60.1 ± 3.1 35.1 ± 1.4 44.8 ± 1.0

↑
− − − − − − 32.1 47.7 21.6 32.6 41.0 55.9 28.9 39.0
− − ✓ − ✓ − 38.1 51.9 27.3 37.1 48.6 61.5 35.2 44.2
− − ✓ − ✓ ✓ 43.1 56.8 30.5 40.1 49.7 63.4 36.4 45.9

Table 1. Impact of the implicit representations: navigation performance on MultiON val and MultiON test. S=fs activated, O=fo activated
in the corresponding training period (see text). Top/µ: means over 3 runs; Bottom/↑: best validation seeds over 3 runs.

Agent ρ α γ Success Progress SPL PPL AUX ORC
(a) OracleMap† [56] − ✓ 50.4± 3.5 60.5± 3.1 40.7± 2.2 48.8± 1.9 − ✓
(b) OracleEgoMap† [56] − ✓ 32.8± 5.2 47.7± 5.2 26.1± 4.5 37.6± 4.7 − ✓
(c) NoMap† [56] − ✓ 16.7± 3.6 33.7± 3.3 13.1± 2.4 26.0± 1.7 − −
(d) ProjNMap† [26] − ✓ 25.9± 1.1 43.4± 1.0 18.3± 0.6 30.9± 0.7 − −
(e) NoMap ✓ − 42.3± 1.5 56.7± 0.9 28.1± 1.0 37.8± 1.8 − −
(f) ProjNMap [26] ✓ − 39.7± 2.3 55.4± 1.4 28.7± 1.1 40.1± 1.9 − −
(g) Implicit (Ours) w/ curriculum w/ pre-train ✓ − − 46.7± 3.0 60.1± 3.1 35.1± 1.4 44.8± 1.0 − −
(h) ProjNMap + AUX [37] N/A ✓ N/A 57.7 ± 3.7 70.2 ± 2.7 37.5 ± 2.0 45.9 ± 1.9 ✓ −
(i) Implicit (Ours) w/o curriculum w/ pre-train + AUX ✓ ✓ ✓ 58.3± 0.8 69.4± 1.1 43.8± 1.0 52.1± 1.6 ✓ −
(j) Implicit (Ours) w/o curriculum w/o pre-train − ✓ ✓ 54.8± 3.6 68.0± 3.4 41.7± 1.9 51.3± 1.6 − −
(k) Implicit (Ours) w/o curriculum w/o pre-train + AUX − ✓ ✓ 57.9± 2.0 69.5± 0.6 43.3± 2.2 51.9± 3.7 ✓ −

Table 2. Comparison with SOTA methods on MultiON test. †=performance taken from [37]. “AUX” = auxiliary losses using privileged
information [37]. “ORC”=non-comparable, uses oracle information. ρ = pre-training of input encoders from [37]. α = finetuning of input
encoders with RL. γ = implicit representations are accessible to the agent since the beginning of RL training (w/o curriculum).

Uncertainty Success Progress SPL PPL
− 35.4± 3.0 49.7± 3.3 29.4± 2.0 40.9± 2.4

✓ 43.4± 3.1 58.0± 3.0 35.1± 0.8 46.4± 1.0

Table 3. Uncertainty: comparing training w/ semantic input only,
no occupancy, from the beg. of training, w/ and w/o uncertainty.

ing, as it will be shown later (in Table 2) that the same final
performance can be reached without this initial pre-training
of encoders. Training and evaluation hyper-parameters, ar-
chitecture details were taken from [56]. Reported quantita-
tive results are obtained after 3 training runs for each model.

Impact of the implicit representations — Table 1
shows the impact of the two implicit representations on
navigation (top: means over 3 runs; bottom: best validation
seeds over 3 runs). To keep compute requirements limited
and decrease sample complexity, in these ablations we do
not train the full agent from scratch, in particular since the
early stages of training are spent on learning basic interac-
tions. We decompose training into three phases: 0−30M
steps (no implicit representations, i.e. all entries to the agent
related to fs and fo are set to 0); 30M−50M steps (training
includes the Semantic Finder fs) and finally 50M−70M
steps (full model). This 3-steps approach will be denoted
as curriculum (See Table 2, w/ curriculum: − in γ column).
All metrics on both val and test sets are improved, with the
biggest impact provided by the Semantic Finder, which was

expected. We conjecture that mapping object positions is
a more difficult task, which is less easily delegated to the
vectorial GRU representation, than occupancy. We also see
an impact of the occupancy representation, which not only
confirms the choice of the implicit representation fo itself,
but also its global read through r(θo). Training curves are
given in the supplementary material.

Uncertainty — has an impact on agent performance, as
we show in the ablation in Table 3. Indeed, when training
an agent with the semantic input since the beginning of
training (w/o curriculum) and no occupancy input (as the
uncertainty is only related to semantic information), feeding
the agent with the computed uncertainty about the output of
the Semantic Finder brings a boost in performance.

Comparison with previous SOTA methods — is done
in Table 2. The performance entries of these baselines are
taken from [37], which describes the winning entry of the
CVPR 2021 MultiON competition. Our method outperforms
the different competing representations, even when they ben-
efit from the same pre-training scheme and are thus com-
pletely comparable. NoMap with pre-training corresponds to
the first row of Table 1. The difference between (g) and (i) is
the use of the auxiliary tasks in [37], but also that the implicit
representations are available to the agent during the whole
training period for (i), i.e. no decomposition into 3 phases as
in the ablations in Table 1 (w/o curriculum). Moreover, com-



Figure 3. Capacity of the semantic representation: we report mean distance prediction
error (normalized ∈ [0, 1]) as a function of the number of stored objects. Replay buffers
are composed of dummy queries: (a) one-hot queries with same dimension as number of
objects; (b) random query with dimension 9; (c) random query with same dimension as
number of objects.

Figure 4. Lifelong learning of the semantic
repr. fs: we report mean error in meters,
test set, 600 episodes, as a function of the
number of time steps since the object was
first seen in the episode (t=0). The error falls
immediately and stays low over the episode.

pared to (g), in (i) the weights of the pre-trained encoders
are finetuned. We see that the gains of our representations
are complementary to the auxiliary losses in [37]. (j) and (k)
confirm this finding, showing that most of the gain compared
with (h) comes from the implicit representations, with the
auxiliary losses bringing an additional boost. (j) and (k) also
show that, even though pre-training can help speed up RL
training, similar test performance is achieved without it.

Reconstruction performance of the Global Reader r
— although the task of reconstructing egocentric maps from
occupancy functions fo is only used to train the Global reader
r, we see it is a reliable proxy for the quality of extracting
the global latent vector e fed to the agent.

Accuracy Jaccard Index
83.4 56.5

Table 4. Performance of the
global reader r: We report
accuracy and Jaccard index.

In Table 4 we report recon-
struction performance mea-
sured as accuracy and mean
Jaccard Index on the valida-
tion split of the dataset used
to train the reader. We judge
that an accuracy of 83.4% is
surprisingly high, given that

the global reader needs to reconstruct the content of the rep-
resentation directly from its parameters θo, that each implicit
representation has been initialized randomly, and that the
reader is required to be invariant w.r.t. to reparameteriza-
tion (see Section 4). The task is even made harder as neural
weights can be considered as an absolute representation of
the env. and the reader must combine it with information
about the agent pose to reconstruct an egocentric map.

Capacity of the Semantic Finder — Unlike all other
experiments, this study is performed independently of the of-
ficial MultiON benchmark. We construct a synthetic dataset
to evaluate the capacity of the Semantic Finder. More details
about the generated data can be found in the supplementary
material. As the granularity of the implicit representations
is handled through the budget in terms of trainable parame-
ters, we evaluate the capacity of the Semantic Finder fs to
store large numbers of objects in Figure 3: In (a), we see

that increasing the number of objects up to 1000 does not
increase error with sufficient gradient updates. However,
since inputs are 1-in-K, increasing the number of objects
also increases capacity. (c) shows that this does not hold for
random objects (not 1-in-K), whose less structured storage
requires more capacity. In (b), we keep the input dimension
fixed for random objects, further increasing error.

Evaluating catastrophic forgetting — we evaluate the
capacity of the Semantic Finder fs to hold the learned infor-
mation over the full length of the sequence in spite of the fact
that it is continuously trained. Figure 4 shows the evolution
of the mean error in distance for the predicted position of
queried target objects as a function of time. The error quickly
goes below 1.5m once the object has been seen the first time
(t=0 in the plot), which is distance threshold required by the
MultiON task, and stays there, providing evidence that the
model does not suffer from catastrophic forgetting.

Runtime performance — inspite of requiring to conti-
nously train the representations, we achieve 45 fps during
parallelized RL training, including the environment steps
(simulator rendering), forward passes, representation train-
ing and RL training on a single V100 GPU. The average
time of one agent forward pass, including updates of implicit
representations is 20ms on a V100 GPU, which is equivalent
to 50 fps, enough for real-time performance.

5. Conclusion

We introduce two implicit representations to map semantic,
occupancy and exploration information. The first estimates
the position of an object of interest from a vector query, while
the second encapsulates information about occupancy and
explored area in the environment. We also introduce a global
read directly from the trainable weights of this representation.
Our experiments show that both implicit representations have
a positive impact on the performance of the agent. We also
studied the scaling laws of the semantic representation and
its behavior in the targeted lifelong learning problem.



References
[1] Michal Adamkiewicz, Timothy Chen, Adam Caccavale,

Rachel Gardner, Preston Culbertson, Jeannette Bohg, and
Mac Schwager. Vision-only robot navigation in a neural radi-
ance world. IEEE Robotics and Automation Letters, 2022. 2,
4, 5

[2] Peter Anderson, Angel X. Chang, Devendra Singh Chaplot,
Alexey Dosovitskiy, Saurabh Gupta, Vladlen Koltun, Jana
Kosecka, Jitendra Malik, Roozbeh Mottaghi, Manolis Savva,
and Amir Roshan Zamir. On evaluation of embodied naviga-
tion agents. arXiv preprint, 2018. 2, 6

[3] A. Banino, C. Barry, B. Uria, C. Blundell, T. Lillicrap, P.
Mirowski, A. Pritzel, M.J. Chadwick, T. Degris, J. Modayil,
G. Wayne, H. Soyer, F. Viola, B. Zhang, R. Goroshin, N.
Rabinowitz, R. Pascanu, C. Beattie, S. Petersen, A. Sadik, S.
Gaffney, H. King, K. Kavukcuoglu, D. Hassabis, R. Hadsell,
and D. Kumaran. Vector-based navigation using grid-like
representations in artificial agents. Nature, 557, 2018. 1

[4] Edward Beeching, Jilles Dibangoye, Olivier Simonin, and
Christian Wolf. Deep reinforcement learning on a budget:
3d control and reasoning without a supercomputer. In ICPR,
2020. 2

[5] Edward Beeching, Jilles Dibangoye, Olivier Simonin, and
Christian Wolf. Egomap: Projective mapping and structured
egocentric memory for deep RL. In ECML-PKDD, 2020. 1,
2, 3

[6] Edward Beeching, Jilles Dibangoye, Olivier Simonin, and
Christian Wolf. Learning to plan with uncertain topological
maps. In ECCV, 2020. 1, 2

[7] G. Bono, L. Antsfeld, A. Sadek, G. Monaci, and C.
Wolf. Learning with a Mole: Transferable latent spa-
tial representations for navigation without reconstruction.
arXiv:2306.03857, 2023. 2

[8] Guillaume Bresson, Zayed Alsayed, Li Yu, and Sébastien
Glaser. Simultaneous localization and mapping: A survey of
current trends in autonomous driving. IEEE Transactions on
Intelligent Vehicles, 2017. 2

[9] Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Hal-
ber, Matthias Niebner, Manolis Savva, Shuran Song, Andy
Zeng, and Yinda Zhang. Matterport3d: Learning from rgb-d
data in indoor environments. In I.C. on 3D Vision, 2018. 6

[10] Devendra Singh Chaplot, Dhiraj Gandhi, Abhinav Gupta,
and Ruslan Salakhutdinov. Object goal navigation using
goal-oriented semantic exploration. In In Neural Information
Processing Systems, 2020. 2

[11] Devendra Singh Chaplot, Dhiraj Gandhi, Saurabh Gupta, Ab-
hinav Gupta, and Ruslan Salakhutdinov. Learning to explore
using active neural slam. In ICLR, 2020. 2

[12] Devendra Singh Chaplot, Ruslan Salakhutdinov, Abhinav
Gupta, and Saurabh Gupta. Neural topological slam for visual
navigation. In CVPR, 2020. 1, 2, 3

[13] Shizhe Chen, Pierre-Louis Guhur, Makarand Tapaswi,
Cordelia Schmid, and Ivan Laptev. Think Global, Act Lo-
cal: Dual-scale Graph Transformer for Vision-and-Language
Navigation. 2022. 1, 2

[14] Zhiqin Chen and Hao Zhang. Learning implicit fields for
generative shape modeling. In CVPR, 2019. 2

[15] Chi-Ming Chung, Yang-Che Tseng, Ya-Ching Hsu, Xiang-
Qian Shi, Yun-Hung Hua, Jia-Fong Yeh, Wen-Chin Chen,
Yi-Ting Chen, and Winston H Hsu. Orbeez-slam: A real-time
monocular visual slam with orb features and nerf-realized
mapping. In ICRA, 2023. 3

[16] C.J. Cueva and X.-X. Wei. Emergence of grid-like representa-
tions by training recurrent neural networks to perform spatial
localization. In ICLR, 2018. 1

[17] S. Dey, A. Sadek, G. Monaci, B. Chidlovskii, and C. Wolf.
Learning whom to trust in navigation: dynamically switching
between classical and neural planning. In IROS, 2023. 2

[18] Heming Du, Xin Yu, and Liang Zheng. VTNet: Visual Trans-
former Network for Object Goal Navigation. In ICLR, 2021.
1, 2

[19] Haoqiang Fan, Hao Su, and Leonidas J Guibas. A point set
generation network for 3d object reconstruction from a single
image. In CVPR, 2017. 2

[20] Kuan Fang, Alexander Toshev, Li Fei-Fei, and Silvio Savarese.
Scene memory transformer for embodied agents in long-
horizon tasks. In CVPR, 2019. 1, 2

[21] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian
approximation: Representing model uncertainty in deep learn-
ing. In ICML, 2014. 5

[22] Ian J. Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville,
and Yoshua Bengio. An empirical investigation of catas-
trophic forgetting in gradient-based neural networks. In ICLR,
2014. 4

[23] Thibault Groueix, Matthew Fisher, Vladimir G Kim, Bryan C
Russell, and Mathieu Aubry. A papier-mâché approach to
learning 3d surface generation. In CVPR, 2018. 2

[24] David Ha, Andrew Dai, and Quoc V Le. Hypernetworks.
arXiv preprint arXiv:1609.09106, 2016. 3

[25] Torkel Hafting, Marianne Fyhn, Sturla Molden, May-Britt
Moser, and Edvard Moser. Microstructure of a spatial map in
the entorhinal cortex. Nature, 436:801–6, 09 2005. 1

[26] João F. Henriques and Andrea Vedaldi. Mapnet: An allo-
centric spatial memory for mapping environments. In CVPR,
2018. 1, 2, 3, 7

[27] Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czar-
necki, Tom Schaul, Joel Z. Leibo, David Silver, and Koray
Kavukcuoglu. Reinforcement learning with unsupervised
auxiliary tasks. In ICLR, 2017. 2

[28] Krishna Murthy Jatavallabhula, Soroush Saryazdi, Ganesh
Iyer, and Liam Paull. gradSLAM: Automagically differen-
tiable SLAM. In ICRA, 2020. 2

[29] Yiding Jiang, Dilip Krishnan, Hossein Mobahi, and Samy
Bengio. Predicting the generalization gap in deep networks
with margin distributions. arXiv preprint arXiv:1810.00113,
2018. 3

[30] Peter Karkus, Shaojun Cai, and David Hsu. Differentiable
SLAM-net: Learning Particle SLAM for Visual Navigation.
In CVPR, 2021. 2

[31] Ivan Kobyzev, Simon J.D. Prince, and Marcus A. Brubaker.
Normalizing flows: An introduction and review of current
methods. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 43(11), 2021. 5



[32] Xueting Li, Shalini De Mello, Xiaolong Wang, Ming-Hsuan
Yang, Jan Kautz, and Sifei Liu. Learning Continuous Envi-
ronment Fields via Implicit Functions. In ICLR, 2022. 2, 4,
5

[33] Yunzhu Li, Shuang Li, Vincent Sitzmann, Pulkit Agrawal,
and Antonio Torralba. 3d neural scene representations for
visuomotor control. In CoRL, 2022. 3

[34] Iker Lluvia, Elena Lazkano, and Ander Ansuategi. Ac-
tive Mapping and Robot Exploration: A Survey. Sensors,
21(7):2445, 2021. 2

[35] Charles H Martin and Michael W Mahoney. Heavy-tailed
universality predicts trends in test accuracies for very large
pre-trained deep neural networks. In SDM, 2020. 3

[36] Charles H Martin, Tongsu Serena Peng, and Michael W Ma-
honey. Predicting trends in the quality of state-of-the-art
neural networks without access to training or testing data.
Nature Communications, 2021. 3

[37] Pierre Marza, Laetitia Matignon, Olivier Simonin, and Chris-
tian Wolf. Teaching agents how to map: Spatial reasoning for
multi-object navigation. In IROS, 2022. 3, 6, 7, 8

[38] Daniel Maturana and Sebastian Scherer. Voxnet: A 3d convo-
lutional neural network for real-time object recognition. In
IROS, 2015. 2

[39] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-
bastian Nowozin, and Andreas Geiger. Occupancy networks:
Learning 3d reconstruction in function space. In CVPR, 2019.
2

[40] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view synthe-
sis. In ECCV, 2020. 2

[41] Piotr Mirowski, Razvan Pascanu, Fabio Viola, Hubert Soyer,
Andy Ballard, Andrea Banino, Misha Denil, Ross Goroshin,
Laurent Sifre, Koray Kavukcuoglu, Dharshan Kumaran, and
Raia Hadsell. Learning to navigate in complex environments.
In ICLR, 2017. 2, 3

[42] Joseph Ortiz, Alexander Clegg, Jing Dong, Edgar Sucar,
David Novotny, Michael Zollhoefer, and Mustafa Mukadam.
iSDF: Real-Time Neural Signed Distance Fields for Robot
Perception. 2022. arXiv: 2204.02296. 2, 4, 5

[43] Shaowu Pan, Steven L Brunton, and J Nathan Kutz. Neu-
ral implicit flow: a mesh-agnostic dimensionality reduc-
tion paradigm of spatio-temporal data. arXiv preprint
arXiv:2204.03216, 2022. 3

[44] Emilio Parisotto and Ruslan Salakhutdinov. Neural map:
Structured memory for deep reinforcement learning. In ICLR,
2018. 1, 2, 3

[45] Jeong Joon Park, Peter Florence, Julian Straub, Richard New-
combe, and Steven Lovegrove. Deepsdf: Learning continuous
signed distance functions for shape representation. In CVPR,
2019. 2

[46] A. Pashevich, C. Schmid, and C. Sun. Episodic transformer
for vision-and-language navigation. In ICCV, 2021. 6

[47] Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez
Colmenarejo, Alexander Novikov, Gabriel Barth-Maron, Mai
Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springen-
berg, Tom Eccles, Jake Bruce, Ali Razavi, Ashley Edwards,

Nicolas Heess, Yutian Chen, Raia Hadsell, Oriol Vinyals,
Mahyar Bordbar, and Nando de Freitas. A Generalist Agent.
arXiv:2205.06175, 2022. 1, 2

[48] A. Sadek, G. Bono, B. Chidlovskii, A. Baskurt, and C. Wolf.
Multi-Object Navigation in real environments using hybrid
policies. In ICRA, 2023. 2

[49] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Rad-
ford, and Oleg Klimov. Proximal policy optimization algo-
rithms. arXiv preprint, 2017. 6

[50] Dhruv Shah, Benjamin Eysenbach, Nicholas Rhinehart, and
Sergey Levine. Rapid Exploration for Open-World Naviga-
tion with Latent Goal Models. In CORL, 2021. 5

[51] Vincent Sitzmann, Julien Martel, Alexander Bergman, David
Lindell, and Gordon Wetzstein. Implicit neural representa-
tions with periodic activation functions. NeurIPS, 2020. 2

[52] Edgar Sucar, Shikun Liu, Joseph Ortiz, and Andrew J Davison.
imap: Implicit mapping and positioning in real-time. In ICCV,
2021. 2, 3, 4, 5

[53] Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara
Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ra-
mamoorthi, Jonathan Barron, and Ren Ng. Fourier features let
networks learn high frequency functions in low dimensional
domains. NeurIPS, 2020. 5

[54] Thomas Unterthiner, Daniel Keysers, Sylvain Gelly, Olivier
Bousquet, and Ilya Tolstikhin. Predicting neural network
accuracy from weights. arXiv preprint arXiv:2002.11448,
2020. 3

[55] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In NeurIPS, 2017. 1,
2, 5

[56] Saim Wani, Shivansh Patel, Unnat Jain, Angel X. Chang,
and Manolis Savva. Multion: Benchmarking semantic map
memory using multi-object navigation. In NeurIPS, 2020. 2,
3, 4, 6, 7

[57] Yiheng Xie, Towaki Takikawa, Shunsuke Saito, Or Litany,
Shiqin Yan, Numair Khan, Federico Tombari, James Tompkin,
Vincent Sitzmann, and Srinath Sridhar. Neural fields in visual
computing and beyond. arXiv preprint arXiv:2111.11426,
2021. 2, 5

[58] Scott Yak, Javier Gonzalvo, and Hanna Mazzawi. Towards
task and architecture-independent generalization gap predic-
tors. arXiv preprint arXiv:1906.01550, 2019. 3

[59] Shuaifeng Zhi, Tristan Laidlow, Stefan Leutenegger, and An-
drew J Davison. In-place scene labelling and understanding
with implicit scene representation. In ICCV, 2021. 3, 4

[60] Shuaifeng Zhi, Edgar Sucar, Andre Mouton, Iain Haughton,
Tristan Laidlow, and Andrew J Davison. ilabel: Interactive
neural scene labelling. arXiv preprint arXiv:2111.14637,
2021. 3

[61] Andrey Zhmoginov, Mark Sandler, and Max Vladymy-
rov. Hypertransformer: Model generation for supervised
and semi-supervised few-shot learning. arXiv preprint
arXiv:2201.04182, 2022. 3

[62] Yuke Zhu, Roozbeh Mottaghi, Eric Kolve, Joseph J. Lim,
Abhinav Gupta, Li Fei-Fei, and Ali Farhadi. Target-driven
visual navigation in indoor scenes using deep reinforcement
learning. In ICRA, 2017. 2



[63] Zihan Zhu, Songyou Peng, Viktor Larsson, Weiwei Xu, Hujun
Bao, Zhaopeng Cui, Martin R Oswald, and Marc Pollefeys.
Nice-slam: Neural implicit scalable encoding for slam. CVPR,
2022. 3


